Supervised Learning Applied to Air Traffic Trajectory Classification

Christabelle Bosson
Tasos Nikoleris

University Space Research Association - NASA Ames Research Center

SciTech 2018 IS-15 January 11, 2018

Motivation

→ New airspace uses and challenges

→ Need for autonomy

- → Future autonomous Air Traffic Management (ATM) tools will rely on:
 - → Aircraft states
 - Machine learning and reasoning

Research Objective

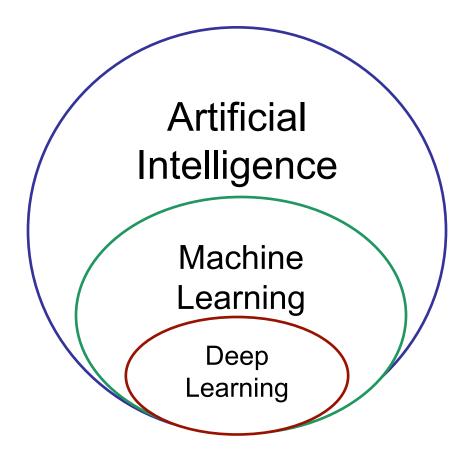
Explore supervised machine learning techniques in the context of aircraft trajectories to predict the landing runway.

Outline

- Background
- Problem Description
- Methodology
- Results
- Conclusion

Background

Hierarchy of Artificial Intelligence

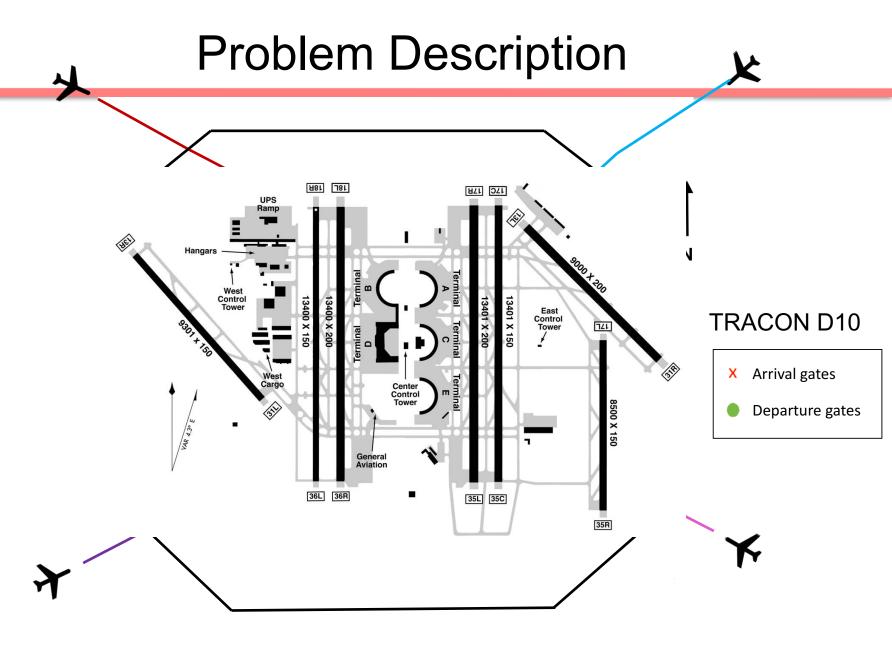


Background

- Applications of Machine Learning in ATM:
 - Air traffic delay prediction
 - Bayesian network [Xu et al., 2005]
 - Decision Trees, Random Forest, and K-Nearest-Neighbors [Choi et al., 2016]
 - Air traffic characterization
 - Clustering [Gariel et al., 2011][Conde Rocha Murça, 2016]
 - Reinforcement learning [Bloem and Bambos, 2015]
 - Air traffic reroute learning
 - Clustering [Arneson, 2015]
 - Data mining [Evans and Lee, 2017]
- Application of Deep Learning in ATM:
 - Flight delay prediction [Kim et al.,2016]

Background

- ATM benefits from Machine Learning
- Improvements of computational resources
- Need for autonomous systems
- Future autonomous ATM tools will rely on the predictions of future aircraft states

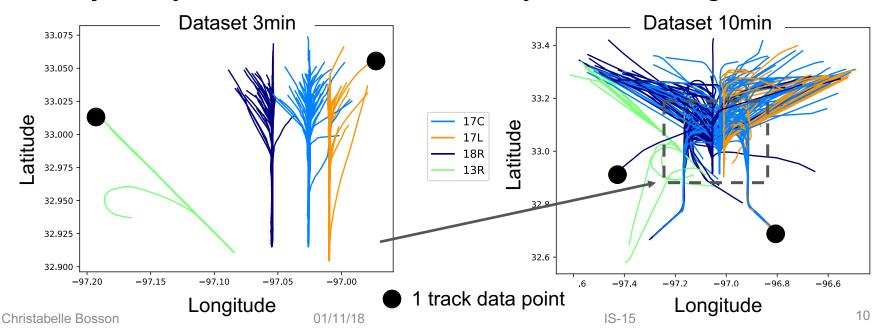


Problem Description

- Runway problem formulated as a trajectory classification study
 - Input: time series of aircraft states described by ten features
 - Output: landing runway
- Ten selected features
 - Airline
 - Aircraft weight class
 - TRACON entry location and entry time
 - Time steps of
 - Longitude, latitude, altitude
 - Ground speed, course angle, rate of climb

Methodology

- Data extraction
 - June 2017 DFW arrival flown tracks extracted from the NASA
 Ames Sherlock Data warehouse
 - 20,822 arrivals in South Flow configuration
- Two datasets are created using one track data point per trajectory, either 3 or 10 min away from landing into DFW



Methodology

Exploration of Machine Learning classification techniques

- Non neural network classifiers
 - Logistic Regression
 - Support Vector Machine
 - Bayes Classifiers
 - K-Nearest-Neighbors
 - Decision Trees
 - Ensemble Methods (bagging and boosting methods)
- Neural network classifiers
 - Multi-Layer Perceptron
 - Convolutional Neural Network

Methodology

- Computation pipeline
 - Preprocessing: data shuffling then K-Fold cross validation
 - Model computation: 21 models
 - 13 non neural network classifiers
 - 8 neural network classifiers
 - Post processing and results analysis
- Implementation: Python, Scikit-Learn and TensorFlow libraries

Results

Three analysis were conducted

- Prediction Analysis
- Sensitivity Analysis
- Feature Importance Analysis

Prediction Analysis

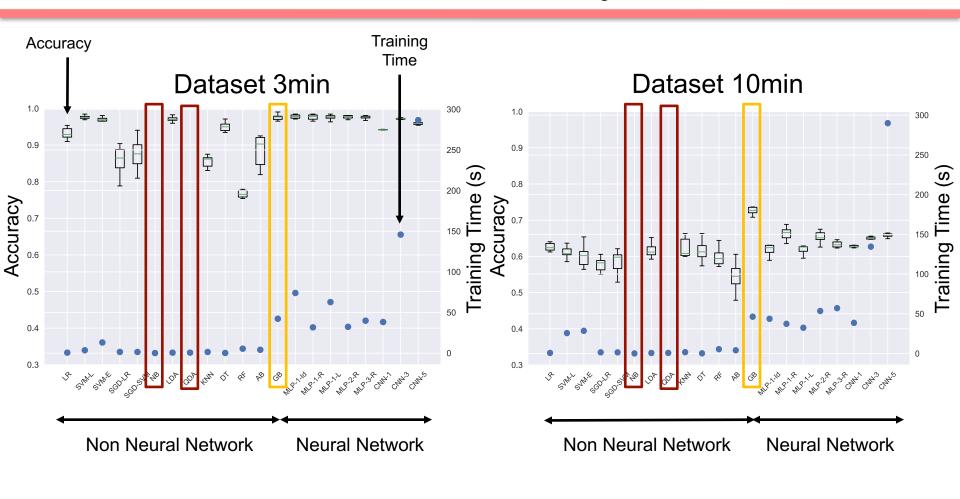
Objectives:

- Can the landing runway be accurately predicted with the ten selected features and one track data point per trajectory?
- How close to the runway must that point be to obtain accurate predictions?

Results:

Trend	Dataset 3min	Dataset 10min
Accuracy	19.3% to 97.7%	10.9% to 73.2%
Training times	0.12s to 286.7s	0.12s to 289.9s
Testing times	0.009s to 2.26s	0.002s to 8.7s

Prediction Analysis



Best classifier: Gradient Boosting

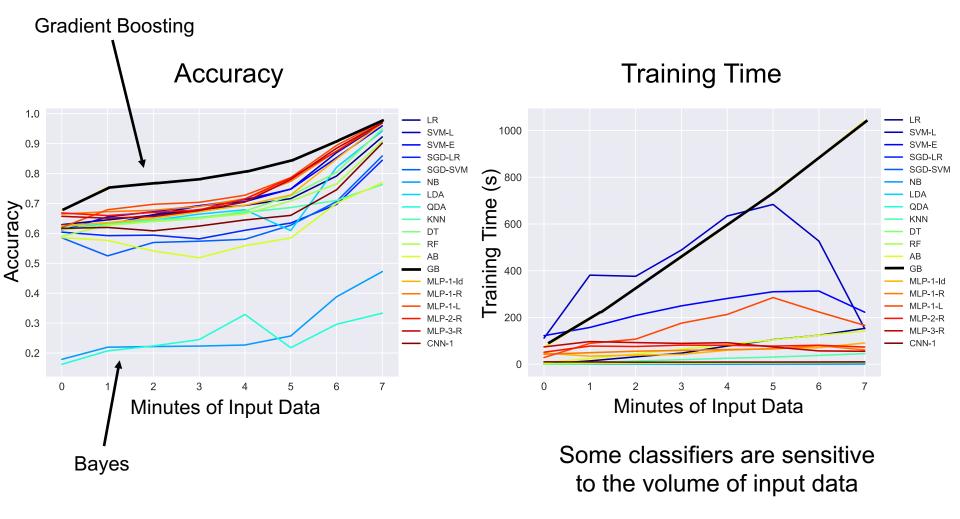
☐ Worst classifiers: Bayes

Sensitivity Analysis

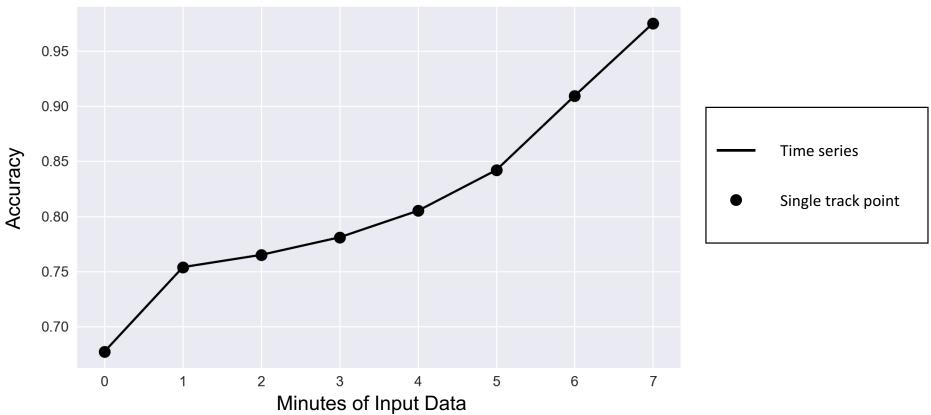
Objectives:

- Can the prediction accuracy obtained with Dataset 10min be improved by training the classifiers using more time steps?
- What is the sensitivity of each classifier with respect to the amount of time steps used in training?
- Process: start with Dataset 10min, increase the number of time steps to represent each trajectory during training

Sensitivity Analysis



Sensitivity Analysis



- The accuracy results are similar using one or more track data points during training
- The accuracy improvement depends on location not on the number time steps used during training

Feature Importance Analysis

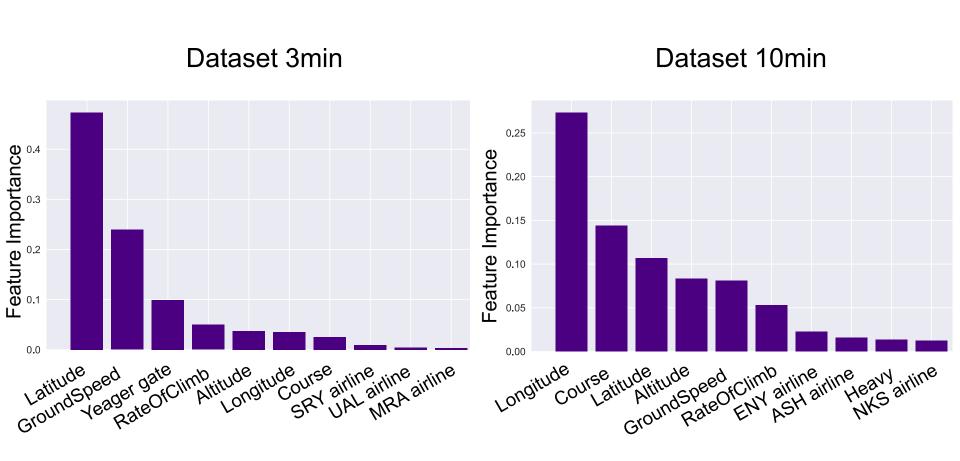
Objectives:

- What are the most impactful features on the classification results?
- Does the time step at which the analysis is performed influence the results?

Process:

- Gradient Boosting classifier is used
- 2 cases are considered
 - Case Dataset 3min
 - Case Dataset 10min

Feature Importance Analysis



Note: results depends on the DFW airport geometry

Conclusion

- Exploration of Machine Learning techniques to solve a trajectory-runway classification problem
- Analysis results showed that
 - The different techniques perform differently to solve the problem
 - The closer to the runway the more accurate the landing predictions
 - Neural network models take longer to train than non neural network classifiers
 - Prediction accuracy results are similar whether one or more track data points are used as inputs for training
 - Some classifiers training times are sensitive to the amount of data used as input
 - For DFW, latitude and ground speed dominate 3min away from landing whereas longitude dominates 10min away from landing

Thank you!

Questions?

Christabelle.s.bosson@nasa.gov